

74F456
 Octal buffer/driver with parity, non-inverting (3-State)

Product specification
Supersedes data of 1999 Jan 08
IC15 Data Handbook

FEATURES

- High impedance NPN base inputs for reduced loading ($40 \mu \mathrm{~A}$ in High and Low states)
- 74F456 combines 74F244 and 74F280A functions in one package
- 74 F 456 is a center pin version of the 74 F 656 A
- Non-Inverting
- 3-State outputs sink 64 mA and source 15 mA
- 24-pin plastic Slim DIP (300 mil) package
- Broadside pinout simplifies PC board layout

DESCRIPTION

The 74F456 is an octal buffer and line driver with parity generation/checking designed to be employed as memory address drivers, clock drivers and bus-oriented transmitters/receivers. These parts include parity generator/checker to improve PC board density.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 456	7.5 ns	64 mA

ORDERING INFORMATION

DESCRIPTION	COMMERCIAL RANGE $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$, $\mathrm{T}_{\mathrm{amb}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	PKG DWG \#
24-pin plastic Slim DIP (300mil)	N74F456N	SOT222-1
24-pin plastic SOL	N74F456D	SOT137-1

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
D0-D7	Data inputs	$2.0 / 0.066$	$40 \mu \mathrm{~A} / 40 \mu \mathrm{~A}$
PI	Parity input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\text { OE0, OE1 }}$	Output Enable inputs (active Low)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
EE, LO	Parity outputs	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$
Q0-Q7	Data outputs	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

3	P3			
		$3,5,6,7,8$$9,10,11,12$$\quad[$ EVEN $] \nabla$		23
		$\begin{array}{\|ll} 3,5,6,7,8 \\ 9,10,11,12 \end{array} \quad[\text { ODD }] \nabla$		24
1 N	$\geqslant 1$			
2 N		EN4		
			\square	
4	Z5		4∇	22
5	Z6			21
6	Z7			20
8	Z8			17
9	Z9			16
10	Z10			15
11	Z11			14
12	Z12			13

FUNCTION TABLE

INPUTS			OUTPUTS
$\overline{\text { OE0 }}$	$\overline{\text { OE1 }}$	Dn	Qn
L	L	L	L
L	L	H	H
H	X	X	Z
X	H	X	Z

[^0]FUNCTION TABLE for PARITY OUTPUTS

INPUTS	OUTPUTS	
Number of inputs, High (PI, D0 - D7)	$\Sigma \mathrm{E}$	$\Sigma \mathrm{O}$
Even $-0,2,4,6,8$	H	L
Odd - 1, 3, 5, 7, 9	L	H
Any $\overline{\text { OEn }=\text { High }}$	Z	Z

[^1]

ABSOLUTE MAXIMUM RATINGS

(Operation beyond the limits set forth in this table may impair the useful life of the device.
Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$\mathrm{V}_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{N}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	128	mA
$\mathrm{~T}_{\text {amb }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		MIN	NOM	MAX	
$\mathrm{V}_{\text {cc }}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{V}_{1 \mathrm{H}}$	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
IOH	High-level output current			-15	mA
IOL	Low-level output current			64	mA
$\mathrm{T}_{\text {amb }}$	Operating free-air temperature range	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS

(Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			LIMITS			UNIT			
			MIN	TYP ${ }^{2}$	MAX							
V_{OH}	High-level output voltage					$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.4			V
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.7	3.3				V			
			$\mathrm{IOH}^{\prime}=-15 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {CC }}$	2.0				V			
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\mathrm{V}_{\text {CC }}=\mathrm{MIN}$,		$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$			0.55	V			
			$\mathrm{V}_{1 \mathrm{H}}=$	$L=M A X$	$\pm 5 \% \mathrm{~V}_{\text {cc }}$		0.42	0.55	V			
V_{IK}	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}$	I_{IK}			-0.73	-1.2	V			
I	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}_{1}$	$=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$			
${ }_{1} \mathrm{H}$	High-level input current	Dn	$V_{C C}=M A X, V_{1}=2.7 \mathrm{~V}$					40	$\mu \mathrm{A}$			
		PI, OEn						20	$\mu \mathrm{A}$			
I/L	Low-level input current	Dn	$V_{C C}=M A X, V_{1}=0.5 \mathrm{~V}$					-40	$\mu \mathrm{A}$			
		PI, OEn						-20	$\mu \mathrm{A}$			
l OzH	Off-state output current High-level voltage applied		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$\mathrm{O}=2.7 \mathrm{~V}$				50	$\mu \mathrm{A}$			
IozL	Off-state output current Low-level voltage applied		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-50	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			-100		-225	mA			
${ }^{\text {Icc }}$	Supply current (total)	$\mathrm{I}_{\mathrm{CCH}}$	$V_{C C}=\mathrm{MAX}$				50	80	mA			
		$\mathrm{I}_{\text {CCL }}$					78	110	mA			
		ICCZ					63	90	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\text {amb }}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \\ \mathrm{~T}_{\text {amb }}=+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{V}_{\mathrm{Cc}}=+5 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}_{\mathrm{amb}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			MIN	TYP	MAX	MIN	MAX	
$\begin{aligned} & \text { tpLH } \\ & t_{\text {tPHL }} \end{aligned}$	Propagation delay Dn to Qn	Waveform 1	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{tpLH}^{\text {tpHL }} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Dn to $\Sigma \mathrm{E}, \Sigma \mathrm{O}$	Waveform 1, 2	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 14.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 16.5 \end{aligned}$	ns
$\begin{aligned} & \text { tpZH } \\ & \text { tpzL } \end{aligned}$	Output Enable time to High or Low level	Waveform 3 Waveform 4	$\begin{aligned} & 2.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 4.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 11.5 \end{gathered}$	ns
$\begin{aligned} & \text { tpHz } \\ & \text { tplz } \end{aligned}$	Output Disable time from High or Low level	Waveform 3 Waveform 4	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 7.5 \\ & 8.0 \end{aligned}$	ns

AC WAVEFORMS

For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.

Waveform 1. Propagation Delay, Non-Inverting Outputs

Waveform 3. 3-State Output Enable Time to High Level and Output Disable Time from High Level

Waveform 2. Propagation Delay, Inverting Outputs

Waveform 4. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

TEST CIRCUIT AND WAVEFORMS

DIMENSIONS (millimetre dimensions are derived from the original inch dimensions)

UNIT	\mathbf{A} $\mathbf{m a x}$.	$\mathbf{A}_{\mathbf{1}}$ $\mathbf{m i n}$.	$\mathbf{A}_{\mathbf{2}}$ $\mathbf{m a x}$.	\mathbf{b}	$\mathbf{b}_{\mathbf{1}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(1)}$	\mathbf{e}	$\mathbf{e}_{\mathbf{1}}$	\mathbf{L}	$\mathbf{M}_{\mathbf{E}}$	$\mathbf{M}_{\mathbf{H}}$	\mathbf{w}
mm	4.70	0.38	3.94	1.63 1.14	0.56 $\mathbf{m a x}$									
inches	0.43	0.36 0.25	31.9 31.5	6.73 6.48	2.54	7.62	3.51 3.05	8.13 7.62	10.03 7.62	0.25	2.05			

Note

1. Plastic or metal protrusions of 0.01 inches maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT222-1		MS-001AF		\square (95-03-11

detail X

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\begin{gathered} \mathrm{A} \\ \text { max. } \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$z^{(1)}$	θ
mm	2.65	$\begin{aligned} & 0.30 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 15.6 \\ & 15.2 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 7.4 \end{aligned}$	1.27	$\begin{aligned} & 10.65 \\ & 10.00 \end{aligned}$	1.4	$\begin{aligned} & 1.1 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.0 \end{aligned}$	0.25	0.25	0.1	0.9 0.4	$\begin{aligned} & 8^{0} \\ & 0^{\circ} \end{aligned}$
inches	0.10	$\begin{aligned} & 0.012 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.096 \\ & 0.089 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.61 \\ & 0.60 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.29 \end{aligned}$	0.050	$\begin{aligned} & 0.419 \\ & 0.394 \end{aligned}$	0.055	$\begin{aligned} & 0.043 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.043 \\ & 0.039 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.035 \\ & 0.016 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN
	ISSUE DATE				
SOT137-1	IEC	JEDEC	EIAJ		

Data sheet status

Data sheet status	Product status	Definition [1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.
Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support - These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.
Right to make changes - Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors

811 East Arques Avenue
P.O. Box 3409

Sunnyvale, California 94088-3409
Telephone 800-234-7381

All rights reserved. Printed in U.S.A.
Date of release: 08-00
Document order number:
9397-750-07378

PHILIPS

[^0]: $\mathrm{H}=$ High voltage level
 L = Low voltage level
 Z = High impedance "off" state
 X = Don't care

[^1]: $\mathrm{H}=$ High voltage level
 L = Low voltage level
 Z = High impedance "off" state
 $X=$ Don't care

